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Abstraet  Sensitivity analysis is an important component of model building. Sensitivity of the model outputs to variations in
the parameter and initial values of variables may affect the method of solution which is selected, may reduce confidence in the
model and its predictions, and may be an important indicator as to which parameters and initiai values need to be measured
accurately. This paper exiends the current first-order sensitivity techniques and methods to consider second-order effects on the
sensitivity of models. This obvieusly mcludes non-linear effects which are not fully quantifiable by methods based on first-order
techniques. The efficient calcuiation of the sampling of the parameter space leads to graph theory and the “handcuffed-prisoner
problem’. Solutions te the optimal sampling problem are obtained and applied o test problems. The techniques are readily

applicabie to estimating third and higher order effects.

1. INTRODUCTIONM

Sensitivity testing is an important component of building
mathemnatical and simulation models. The values of model
parameters and the itial {input) values of variables are
subject to many sources of uncertainty, An understanding
of the sensttivity of the model outputs to the uncertainty in
the values of the input variables and parameters is
necessary to developing confidence in the model and is
predictions.

Sensutivity analysts (SA) experiments may be performed on
mathematical and computational models to determine the
relative contribution of input variables and parameter
values to the observed vanations in model outputs. These
compulational experiments can determine, within reason-
able limits, which parameters or mitial variable values may
have effects on the model outputs which are negligible,
significant, linear or non-linear.

Boxer afl. [1978)] discuss and define the main effects (first
order), as well as the higher order effects (second order,
third order, ete), and relate these effects to the Taylor
series expansion of the response (or output) function of the
maodel. In particidar, the first-derivative terms in the Tavior
series correspond to the main effects {Le. the effect on the
response function due o perturbation of a single variable);
the second-derivative terms correspond to two-factor
interactions (including the quadratic effects which are twao-
factor interactions of a factor with its2lf):, and so on.

Several sensitivity techniques are available i the Berature
to estimate main and higher order effects (for a review, sec
Helton [1993]). Different methods have been developed to
address the estimation of higher order effects [Baker and
Borgman, 1985] As a drawback, those methods generally
have a relatively high computational cost. Fractional
factorial designs of resolution V and higher, or the central
composite design [Baker and Bargman, 1985]. do permis
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the detection of two-factor interaction effects, but are
expensive In terms of the number of model evaluations
required. Even a two-level resolution V fractional factorial
design requires 25P model evaluations, where 1,/{2P) is
the degree of fractionation [Box er al, 1978]. Any eventual
increase in the degree of fractionation (to decrease the
computationat cost) would lower the resolution of the best
fraction, so increasmg confounding between effects of
various orders.

In dealing with models which are computationally
expensive to evaluate and which have a large number of
input parameters, it is very important to adopt methods
which are “economic™, or which require a relatively small
number of model evaluations. These cemputationally
efficient sensitivity analysis techniques include the ‘one-
factor-at-a-tume’, or OAT, screerung designs [Morris,
1991}, which assess the umpact on the output of changing
one parameler value at a time. These methods aun to
1solate the most impontant factors from amongst a large
number that may affect a particular response, and have
been used to consider first-order effects.

The OAT screening method [Mornis, 1991] requires O(k)
mode! evaluations, where k is the number of model input
factors. In practical applications, the ranpe of values taken
by a particular model parameter may be diseretised into a
number of discrete values or levels. In the Mormis method,
increasing the number of levels does not increase the
computational cost.

The current Moms method provides sensitivify estunates
of total effects (i.e. the sum of first and tugher order effects
due to a single parameter), and an ‘overall’ sensitivity
measure of curvature and interactions between factors. It
does not distinginsh non-linear from mileraction effects.
The “overall” measure of the interactions of a particular
factor or parameter value with the rest of the model is given
by the Morris method, bul it does not give specific



information as to which part of the rest of the model is
interacting. Distinct sensitivity measures for each possible
two-factor, three-factor or higher interactions are not given.

The obvious problem is to develop or extend an existing
method which is computationally efficient in terms of
model evaluations, yet provides more wformation on the
higher order interactions. This paper shows how the Morris
method can be extended to develop information on two-
factor interactions, whilst still retaining its computational
cfficiency.

2. BACKGROUND

Assume that the model output v = y(x) is a scalar [unction
of the vector x of input factors. The vector x = (x,%;,..., %)
has k components x,, each of which can assume integer
values or levels in the set {0, p- 1}. This assumes that the
range of any parameter or initial vahue has been scaled to
the set of levels {0,...,p- 1}, and takes only integer values
over this range. This represents a scaling and discretisation
of the parameter space which is denoted by 0.

For a given x€fl, the elementary effect for the i input
factor {Morris, 1991} is defined as:

Ei(x) = [y{x + &4 - vV, {1
where ¢, is a vector of zeros but with a unit as its i com-
ponent, and A = {(A,,....4,) is a vector whose componenis
are preselecied integer step lengths so that (x +e A, )1s still
in € for each index i = §,... k. The value of x can be varied
for each input facior so as to generate a finite distribution
of elementary effects, F,, containing p(k" ”{p - ) elements.

Sensitivity analysis requires each distribution ¥, to be
sampled by selecting sampling points for the input vector
x [Morris, 1991; Campolongo and Gabrie, 1996; Campo-
iongo and Saltelli, 1997]. Subsequent analysis of the
sampled data assesses the relative importance of the input
factors on the output.

In its simplest form, randomly selecting a value from F,
requires the evaluation of the output y at two pomts, % and
(x +e A}, The total computational cost 1s then n = 2rk
mode] executions, where r is the selected sample size, A
mere economical design, requiring n = r(k+1) model
executions, has been suggested by Morris {1991} and
implemented by Campolongo and Gabric [1996]. This
method carries out the random sampling by

+ randomly selecting a “base” point x” in ;

« using ¥ lo generaie a trajectory consisting of the
points k8, g = 1,....k+1 (note that x° is not included in
the trajectory). The x® are selected so that either
#l=xtredor 18 =38 +e A is in Q, thus pro-
ducing a trajectory which consists of “one at a time’
steps parallel to the k co-ordinate axes in 2,

the clementary effects E(x% can be estimated along
this trajectory, vielding one sample value for each of
the k examined factors,

s further starting points can be used to generate T
trajectories and obtain r samples of each of the
clementary effects.

The above algorithm generates 1 “One-factor-At-a-Time”
(OAT) trajectories in Q. Morris [1991] shows that the
construction of such a trajectory is equivalent to the
construction of a (k+1)-by-k sarpling matrix B, called an
orientation matrix, such that the following properties hold:

(P1) the elements of B are either O or 1,
{(P2) for each value of i=1,2, .k, there are two
rows of B that differ only in the i entries.

In the Motris experiment, data analysis is camed out by
examining the distributions F, of elementary effects
relative io each of the input factors. In particular, the
estimated mean p and standard deviation o of F, are two
sensitivity measures indicating respectively the “overall”
effect of the i™ input on the output, and the “overall”
non-linear or Interactions effects.

For a given value of the input vector x, selected in the
parameter space £, we define the elementary effect EE;
{1 <1< j <k), attributable to the pair of ith and j factors,
as

EE(x) = [y(x + o8 +e;8) - y®I/A4; )

where 4 =(4,,...,A,) is a predetermined vector such that
the transformed (x+ed, ij} is still in . The
distribution of EE; s is denoted by FF,.

The quantities EE; can be used in order {o provide a
measure of the effect on the output due to the interaction
between the i™ and the 7 input factors, The effect on the
output vy due to the interaction of factors i and j can be
measured by computing the partial derivative of the output
function y with respect to its input variables x; and x,. An
approximation for this derivative is given by

al{y) _ y(x) + eiAi * ejAj) -yt eiA‘.) -y ejAj} + (1)
ax.0%, AS, '

(3

or by adding and subtracting ¥{x), subtracting the quantity
y(x) as

& g - Lg-Ltag. )

%0, vooa A

A local measure of the magnitude of the effects due to the
interaction between the i and % input factors is given by

g - Lg: (5)

TFE. = |EE. - — A
it i A A I
i i



Denote by T the distribution of the TFE, °s obtained by
varying the point 1 in the parameler space. The estimated
mean A, of the distribution T, arc global sensitivity
measures of the two-factor interactions.

3. THE SAMPLING STRATEGY

Note that, for a model contaimng k input factors, the
number of distributions T,; equel to the number of two-
factor interactions is

(k)“k{kﬁi)
2/ T2

Also note that the computation of each TFE; 1n (5)
necessitates the computstion of three different quantities,
E, E. and EE,, Thus the modef has to be evaluated at four
different points of the parameter space:

Al E=(Xy, 0 %)
(= +ej&j};

B: (z+eg4);
D (z+ed + ejA}-) .

The goal of the experimental design is to extract from gach
distribution Tij’ a sample of T elements, TF'EU] ... TFES, in
order to estimate the distribution mean.

The sampling strategy proposed below aims to provide the
model evaluations needed to compute the quantities E, (for
i=1,..,k) and EE'J (for T2igizk). The computation of the
E{i s is carried out in a second phase of the experymental
plan.

In analogy with the sampling plan described by Moris, the
basic idea is to construct a multiple rafectory (MT) in the
parameter space £ which allows the computation of one
EE, per distribution ¥F,. A multiple trajectory (MT) is
constructed by joining together a number of simpie
trajectories, all having the same starting point. The MT
needs {0 maintain the properties required by Morris so that
at least one elementary effect E, per input can still be
estimated. Attention has then to be restricted io those single
trajectories for which properties P1 and P2 hold.

As in the Morris method, each single trajectory in £
corresponds 10 an orientation matrix. Here an MT
corresponds to the junction of several orientation matrices.
Thus, if each single orientation matrix B, has dimension
m-by-k, the MT will correspond to a muliiple
arientation matrix My, (or sumply, multiple matrix),

n
of dimension (2 ml} by -k .

1ei

In Section 2, it has been pointed out how a (k+1)-by-k
sampling matrix B wouid allow the estimation of (k- 1)
distinel EE;’s (i.¢. belonging to different distributions).
Using a multiple trajeciory to estimate a total number
k(k-1)/2 of EE;’s (i.e. one EEij per distribution FFE] }, the
minimum number of orientation matrices that have o be
joined to provide an MT is respectively k/2, if k is even
and (k+1)/2 if k is odd. This minimaum will be obtained
provided that the following property holds.

(P3) for any pair of orientation matrices B, B,
1 7 j, being part of the same MT, the EE_’s
produced by B, and B, are distinct.

To simpiify the notation, let

= (i) denote an EE, relative to the 1 and | factors;

= given k factors identified by the integers (1, ..., k}, then
T'={(ij}, 1 <]}, and this will be used 1o dentify the set
of EEQ.;

« the path {(ip0) (8.0 (4, i) Le{l. .k} is
denoted (iyi,,....1 ) [Berge, 1973]

The implementation of the experzmental design calls for the
construction of multiple trajectories, or equivalently the
construction multiple matrices, which are made up of
single orientation matrices such that: (1) each single matrix
allows the estimation of (k- 1) distinct EE,’s; (ii} each
single matrix satisfies properties P1 and P2.

In Appendix A, it is shown how, given a block of (k- 1)
distinet EE;;’s, the construction of a (k+1)-by-k sampling
mairix B* {single matrix) satisfying (1) and (i1}, is possible
if the pairs contained in the block are handeuffed, i.c. they
form a path {i,,i,,....1, 7. In order to build an experimental
design which estimates all the total and interaction effects,
the set I*= {(1,1) 1 <]}, contaimng the

{k)m Kl
2] k-2

EE,’s is to be “covered” by subsets of (k- 1) elements
which are handeuffed pairs (for each of those subsets, a
single matrix B* can then be constructed as shown in

Appendix Aj.

in particular, the optimal experimental design (in terms of
computationat cost), will be the one in which the number
of sets utilised in the experimental plan to cover the whole
of T', is & minimum.

4. CONSTRUCTING MULTIPLE TRAJECTORIES

The cases in which the number of input factors K is even or
odd are treated separately.

if k = 2s, the minimum number of (k- 1)-subsels needed to
cover the whole set I" is k/2. The most economical
experimental plan is the one in which each multiple



orientation matnix 15 formed by exactly k/2 single
orientation matrices of dimension (k-+1)-by-k.

Ths reduces io

Problen I “Find a partition of I" made of k/2 subsets
composed of (k- 1} handeutted pairs each”.

The (k- 1) handcuffed pairs, {{i.3,0{1.5), .. (2.0 Jh
represent a path or trajectory, and Problem { relates to the
theory of block designs on graphs.

Foilowing the notation of Hung and Mendelshon [1977]. a
handeuffed design with parameters v, k, @, denoted by
Hi{v k), consists of a system of ordered k-subsets of a
v-set called handeutfed Blocks. In a block (i1, ..., i, - 13
each element is asswmed to be handeuffed to its neighbours
and the block contains (k- 1) handeuffed paus,

In vrder for a handeutled design to exst, the following
conditions have to hold [Hell and Rosa, 19721

(1Y each element of the v-set appears amongst the blocks
the same number of times;
(20 each par of distinet clements of the v-set are

hapdentied in exactly w blocks.

A solution for Problem | is equivalent to proving the
existence of a handeuwffed design Hk k. 1)

A sufficient conditton for the existence of such design is
Hell and Rosa [ [972]:

3V K K@) exists if and ondy f K or w is even.

Sinee k= 25, Condition (3 18 salisfied.

An exampie of the solution of Problem 15 descnbed in
Hung and Mendelshon £1977| The elements of the K-set
(where k = 29), wlentified by the numbers {0, ... 251}
with s = 4, are displaved as edges on a graph as shownm
Frpure |

The construetion of the first path, catled the beginning path,
ts represented w Figure 1 oand s wdentified by 167,50,
4.1.3.2Y, starting at node 6.

/@@b

Figure 1: A muliple trajectory path for K even

A second path can then be obtained by simply shatting the
starting node from node 6 to node 7, Le. moving the full
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path clockwise by one node to obtain the path (7,0,6,1,5,2,4,3).

In the same way, shifling the second path by one node, a
third path (0,1,7,2,6,3,5,4) is found. Once the beginning
block has been found, all the other blocks are completed by
adding one to each element of the previous block and
reducing 1t mod 2s.

A set of s blocks thus obtained, which decompose the
graph into s paths of length (k- 1), is calied a selection.

[fk = 2s+1, the minimum number of (k- 1}-subsets needed
to cover the whole set I" is (s+1}, 1.e. the most economical
experimental plan is the one in which each multiple
orientation mairix is formed by exactly (s+1) single
orientation mairices of dimension {k+1)-by-k. indeed, as
shown below, not all the rows of the (s+§‘)‘h single
orientation matrix are needed. Of those (k+1) rows, enly
the first (s+2) are actually employed as input strings for the
model.

In analogy with the case of k even, and on the basis of the
proof given i Appendix A the problem reduces to

Problem 1T “Find a partitton of T" made of s = (k- 1372
subsets composed of (k- 1) handeuffed pairs each, plus a
subset composed of s handeuffed pairs.

Again, Problem U can be solved using the classical
construction of Hamilion eycles in a graph.

First of all, the elements of the k-set (where k = 2s+1),
identified by the numbers (0, ., 2s- 1,25}, are displayed on
a graph, as shown in Figure 2, fors = 3.

A “beginning” Hamilton cyele 1s found, having as starting/
ending node the edge placed in the middle of the graph. ie.
2s. For example, ifk = 7. the beginning Hamilton cycle can
be taken as HI =6.0,1,5,2,4,3.8} (see Figure 2}

0

(%)

Figurs 2: A multple rajectory for k odd

Each of the subsequent cveles is constructed by shufting the
previous one clociowise by one node. In the example where
k = 7, the second and third eveles are H2 = {6,1,2.0,
3540 and H3=.625314056"

From the s cyeles constructed above, s paths can be derived
by cutiing one of the construction bnes. In particular, the
line that has o be cut 1+ the one joining two adjacent edges,
e, edges represented by two consecuttve indices 1 and
(+1)



in the above example, with k =7, the lines to eliminate in
HI, H2 and H3 are respectively: the one joining (0,1), the
one joining (1,2), and the one joining (2,3). Cutting those
lines, the edges 0 and | become the extremes of the path
PHI1 (derived from HI), the edges | and 2 become the
extremes of the path PH2 {derived from H2), and, finally,
the edges 2 and 3 become the extremes of the path PH3
{derived from H3). Thus, the three paths P1, P2 and P3 are
identified respectively by the blocks: PHI ={0,6,3,4,2,5,1),
PH2=(1,6,4,530.2), and PH3 =(2,6,5,0,4,1.3).

To complete the solution of Problem 11, the last step is now
the construction of a shortest path of length (s+1),
containing the s handeuffed pairs missing to cover the
whole set I'. It can be essily seen that, for k=7, the missing
path is the one represented by the block {0,1,2,3).

In general, the last block missing would be the one given by
{0.1,2,....s). From this final biock, an orientation matrix of
dimension (5+23-by-k can be constructed following the
rules given in Appendix A. Note that, in order to simplify
notation, such matrix will be completed to a (k+1)-by-k
matrix in which the last (k+1)-{s-2) rows are made of 0’s.
Obviously, those rows will not be utilised m the
experimental desipn.

5. THE COMPUTATIONAL COST

Once an MT has been construeted in £, the trajectories are
used to perform mode! runs at each node and to evaluate
each E; and EEQ_

In particular, each single matrix of the MT permits the
estimation of one B per input and (k- 1) EE, . In order to
be able to compute (k- 1) TFE, for each s'mgile matrix, the
mussing (k- 1) E's need to be estimated. For & given pair
of factors (i,j), the values of E, and EE, were obtained by
evaluating the model at the points A, é and D, 1dentified
earlzer.

The model also needs to be evaluated at the peint C:
(1 + e-&}} , and a further (k- 1) model evaluations have to
be adéicd on the side of each single matrix, one for sach
TFE, computed,

The computation of a TFEU. requires four medel evalu-
ations. Thus, randomly selecting a value from each
dlsinbutmn TU, (1@, computing cne TFEU per pair (1,]) of
mput), would require

kik- 1)

4 ox I L

2

model evaluations.

The sampling strategy proposed here is more economical.
To calculate its computational cost, consider the two cases.
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(1) kiseven

The cost of randomly selecting a value from each
distribution Tij {i.e. computing one TFE; per pair {11} of
input) is equal to the number of points covered in the
parameter space by an MT. If k is even, the number of
single trajectories contained in an MT is v = K/2,

Thus, in 2 first approeach, the cost of computing one TFE,
per pair {i.)) of input is given by {[(k+1)+(k- 1)} +k/2}.
(Note that the (k+1) evaluations are needed to compute the
EE’s and the EEU’S, while the (k-1) are needed to
compute the EEs).

In practice, each single trajectory contained in the same
MT has the same starting and ending points. Thus, if an
MT is made by the single trajectories, ST,,8T,,...,5T,,,
once the mode] has been evaluated at the (k+1) points
corresponding to each ST,, the number of evaluations
required for each 8T,, i+ 2,..,k/2 is (k-1). It follows
that the totai number of model evaluations corresponding
to each MT is given by

C,en = (D) + {1k~ 1 x(k/2- 1]} + (k- 1) xk/2

=k -k+2 . 6)

If r is the selected size of the sample to be extracted from

each T,, the total computational cost of the design is
r=C__model simulations.

even
(i) k is odd

¥k is odd, the number of single rajectories forming an MT
is v = s+1, where s = (k-1)/2. Each of the first s single
trajectories contains (k+1) points, while the s+
contains (5+2) points.

To calculate the total number of mode! simulations for k
odd, it is sufficient to add to (6) the evaluations needed to
cover the points contained in the (s+1 Y trajectory. Since
the (s+1)™ trajectory has the same starting point as the
others, but a different finishing point, then (s+1) = (k+1)/2
model evaluations have to be added. The total cost of
computing one TFE, per palr of input leads to

(- Dy x(o/2- D & D xk/2 vl )2
(7

Cogq 7 {kr v
Se-k,
2

t | L e

and the total cost of the experimental design is rC_,
model simulations.

6. TESTIMG THE METHOD

The anatytical function f,, defined on the four-dimensional
cube,

4
f,=3 bw ) bww, (8)
i=] ]

1]



where w, = 2 %(x,- 14} has been constructed to test the
method. The coefficients b, and bij are: by = 10, by, =30
by, = 80; b,y = 60; b, = 40. All the other coefTicients are
randomly generated from a normal distribution with zero
mean and unit standard deviation.

The SA experiment described above has been applied to
the analytical function f, with a sampling step A* = %,
A =A% =14, andasample size r = 10. Results of
the experiment, given in Tables | and 2 for the Morris
{1991] sensitivity measures u(F,} and o(F,), 1 =1,2,3,4,
and are attributing an order of importance to the four
variables of the function f,, which is in good agreement
with the values assigned to the coetficients.

Values of the sensitivity measures A, relative to the
effects on the output due to the interaction between the i
and j* parameters, are in excellent agreement with the
values that one would expect given the values of b,
According to the A, s, the only parameter which has a
significant effect because of interactions with other
parameters 15 X; {the valuesof A withi» Landj= [ are
negligibie with respect to the others); the ranking atiributed
by the &, s for j = 2,3,4 agrees with the ranking of the
b sforj=234

Note that the new measures ALJ- complement the infor-
mation provided by p and o. Fer instance, the high value of
o obtained in the example for x; can be explained as due
to the mieraction of this varnable with the others. In
contrast, a variable such as x,, having a high value of o,
and only one high value out of the three Az‘j’s,j =1,3.4,
1s suspected to be a variable whose effects 1nvolve either
curvature or interaction of third or higher order.

Stronger evidence of this has been obtained by repeating
the experiment on the analytical function f,, which is f with
the value of b,,, changed from b,, = 80 to b,, = 0.8 (so
that all the two-term interaction effects involving x, are
expected to be negligible). Results of the analysis on f, are
given in Tables 2 and 3, where the same sensitivity
measures ji, ¢ and A are used. These results show that the
value obtained for o is sall high, whle all the lz‘}’s,
i=1,3,4 are low. This confirms that the comparison of the
0 with the A, ; values helps in the identification of effects
due either to curvature or thid and higher order
interactions.

In general, a high value of li'} indicates a pair of mput
factors largely affecting the output through their mutuai
interaction. Conversely, a value of ;kj which 1s ¢lose to
zero indicates that the i and / input factors are acting
independently on the output.

The three sensitivity measures, A, ¢ and o, provide a high
level of information about the relative impaortance of the
input factors, and also the nature of their effects on the
output. The values of 4 and ¢ wdicate which inputs are
importani, and distinguish the ones having strong additive
effects tfrom the ones either involved m curvature or
interaction effects. The additional information provided by
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A not only establishes an order of importance of the two-
term interaction effects, but also, considered together with
o, may be heipful in distinguishing curvature effects from
second-order interactions.

Table §: First-order effects for f (see (8))
Total effects Higher order effects
Variable (measured by {measured by
u(E N o(F )
x1 122.0 147.0
x2 66.7 124.1
®3 124.4 64.6
x4 16.2 51.31
Table 2: Second-order effects for f; and £,
Interaction effects | Interaction effects
Variable | for f} {measured by | for I; {measured by
A A
xl, x2 3183 0318
xi, %3 240.9 240.9
xl, x4 1606 160.6
x2, X3 2.001 2.001
x2, x4 0.200 0.199
%3, x4 (.208 0.808

Table 3: First-order effects for f,

Total effects Higher order effects
Vanable (measured by {measured by
EJ(FJ) ao(F.n
x1 48.17 74.97
X2 15.68 71.54
x3 i24.4 64.40
x4 16.22 3131

Table 4: Means of first-order effects on f; for various
values of A* and r

Varlable u(F,) u(F)
A* =V 1 =10 A¥ =1 =30
x1 2230 229.5
x2 {868 192.4
%3 97.39 G98.39
x4 4.407 2733
A*=‘/5,r=i0 A*:/5,1‘:30
x1 258.5 2491
x2 206.2 1991
X3 97.67 97.93
x4 7.37 2.9%
A% =g 1 =10 A¥ = Yy r=30
%} 2447 237.5
%2 1991 192.9
3 91.08 90.87
x4 965 6.24

The experiment on the analytic function f, using the
standard parameter values, has been replicated for different
values of the sample sizes 1, and the sampling step A*.
The resulis are given for the means of the first-order effects



{Table 4} and second-order effects (Table 3). These resuits
indicate that the method s refatively independent of r and A%,
In fact, any change m u(F,) due to variations in r or A*
does not affect the ranking of the variables in terms of
sensitivity of the output.

The results for pair-wise interactions are sunilar in nature.
For all values of A%, the order of importance is the same
for Orders 1 to 4. For A* = Y4 the ordering of the
mteractions x, with x,, and x, with %, is reversed. These
are the feast important of the interactions and they are small
compared with the major interaction effects. In general, the
differences in value of the lowest two interaction effects are
relatively small.

Table 5: Means of second-order effects on {| for vanous
valuesof A*and r

Variable ;,1{'1"ij 3 p;{Tu 3

A* =% r=10 A% =1 r =30
x1, x2 ! 1474 l 1529
x1,x3 3 741.7 3 7781
1, x4 4 471.6 4 4813
X2, %3 6 1623 6 1714
X2, x4 2 1056 2 1094
x3, x4 5 186.2 5 1916

A* -l r =10 A¥ = i =30
Wi, %2 | 3312 l 3151
xi, x3 3 1871 3 1747
x|, x4 4 1023 4 1005
%2, x3 6 4142 t 3847
x2, x4 2 2262 2 2160
X3, x4 5 4213 5 4037

A% =y =10 A* = 1y 1 =30
xi, x2 1 4568 i 4364
x1, X3 3 2564 3 2436
X!, x4 4 1431 4 1409
%2, X3 & 627.7 )] 5913
X2, x4 2 3055 2 2917
X3, x4 0y 604.5 B 583.1

8. SUMMARY ANMD CONCLUSIONS

The SA method proposed here is a development of the
OAT sereening method proposed by Morris [1991]. The
new methed, in addition to the sensilivity measures already
provided by the traditional Morris, offers estimates of the
effects due to the interactions between any pair of input
factors. Many of the already existing screening methods do
not take nto account those effects, but assume instead that
the input variables act additively. This assumption,
although undesirable, 15 needed in order to simplify the
problem and keep low the computational cost of the
experiment. Methods rejecting such an assumption, and
computing higher order effects (1.e. the class of the factorial
desigmns}  are  computationally  expensive, and their
computational cost increases with the number of levels
across which the model input variables are varied.
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The method 1llustrated here requires 5 number of model
evaluations of the O(k ), where k is the number of model
input factors. By comparnison with other methods available
in the literature, and given the information that this method
produces, this cost 1s “reasonable’. Also, the computational
cost does depend on the number of ‘levels’ selected for
each parameter.

The strategy adopted for sampling in the parameter space
is based on notions deriving from the graph theory. The
method can be extended to handle third and higher order
effects. [t can be shown that the optimal design leads to the
handeuffed-triplet-prisoner problem, and a constructive
sofution has not yet been found. Extensions to higher order
interaction effecls lead o similar handeuffed-prisoner
problems.
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APPENDIX A

Given a block of (k- 1) distinet .EElj’s that form a path
{iy iy, iy, construct a (k+1)-by-k sampling mauix B,
whose elements are ("s and {’s, such that:

(i) B allows the estimation of (k- 1) distinet E‘El}j’s;
(i) for each value of i = 1,2, ...k, there are two rows of
B that differ only in their i entries.



The construction of the matrix B(3,)). i=1,..k+1,
j =1, ...k starts by imitialising each element to zero. Then
the following steps are taken:

Step b Let (i,,1,) be the first of the EEU’S that have to be
estimated by B. The construction of B starts from the third
row, where the elements B(3,1,) and B(3,1,) are changed
inte 1's. Then the step is completed by filling down the
columns i, and i, with I’s, i.e. ail the elements B(i,i)),
1z4 and B(i.i,), 124 are changed into I’s,

Step 2: Let (i,,1;) be the second of the .EEq’s that have to
be estimated by B. The fourth row of B is constructed by
changing the element B(4,i,) into 1. Again, this step is
completed by filling down the column i, with 1's.

Step 3: On the basis of the previous two steps, the second
column of B can be modified by changing the element
B(2.1,) into |

Step 4: 1 (iy, i) is the third EE; to be estimated, the fifth
row of B 1s completed by changing the element B(5.1,)
into 1. Consequently, all the elements B(i ), 126 are
changed into 1's,

Step n: Step 4 is repeated tll the matrix 15 exhausted.

In the final k% step, the enly element of the (k+1 W row of
B which has not been modified in any of the previous sieps
{and so is stili a 0} is turned into a 1. The (k+1)® row of B
15 then reduced to arow of all 1's.
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